Investigating the Healthiness of Internet-Sourced Recipes: Implications for Meal Planning and Recommender Systems
Abstract: Food recommenders have the potential to positively influence the eating habits of users. To achieve this, however, we need to understand how healthy recommendations are and the factors which influence this. Focusing on two approaches from the literature (single item and daily meal plan recommendation) and utilizing a large Internet sourced dataset from Allrecipes.com, we show how algorithmic solutions relate to the healthiness of the underlying recipe collection. First, we analyze the healthiness of Allrecipes.com recipes using nutritional standards from the World Health Organisation and the United Kingdom Food Standards Agency. Second, we investigate user interaction patterns and how these relate to the healthiness of recipes. Third, we experiment with both recommendation approaches. Our results indicate that overall the recipes in the collection are quite unhealthy, but this varies across categories on the website. Users in general tend to interact most often with the least healthy recipes. Recommender algorithms tend to score popular items highly and thus on average promote unhealthy items. This can be tempered, however, with simple post-filtering approaches, which we show by experiment are better suited to some algorithms than others. Similarly, we show that the generation of meal plans can dramatically increase the number of healthy options open to users. One of the main findings is, nevertheless, that the utility of both approaches is strongly restricted by the recipe collection. Based on our findings we draw conclusions how researchers should attempt to make food recommendation systems promote healthy nutrition.
0 Replies
Loading