Learning inter-related visual dictionary for object recognitionDownload PDFOpen Website

2012 (modified: 10 Nov 2022)CVPR 2012Readers: Everyone
Abstract: Object recognition is challenging especially when the objects from different categories are visually similar to each other. In this paper, we present a novel joint dictionary learning (JDL) algorithm to exploit the visual correlation within a group of visually similar object categories for dictionary learning where a commonly shared dictionary and multiple category-specific dictionaries are accordingly modeled. To enhance the discrimination of the dictionaries, the dictionary learning problem is formulated as a joint optimization by adding a discriminative term on the principle of the Fisher discrimination criterion. As well as presenting the JDL model, a classification scheme is developed to better take advantage of the multiple dictionaries that have been trained. The effectiveness of the proposed algorithm has been evaluated on popular visual benchmarks.
0 Replies

Loading