Abstract: In this paper, we present a LinkNet-based architecture with SE-ResNeXt-50 encoder and a novel training strategy that strongly relies on image preprocessing and incorporating distorted network outputs. The architecture combines a pre-trained convolutional encoder and a symmetric expanding path that enables precise localization. We show that such a network can be trained on plain RGB images with a composite loss function and achieves competitive results on the DeepGlobe challenge on building extraction from satellite images.
0 Replies
Loading