Language Model Rest Costs and Space-Efficient StorageDownload PDFOpen Website

2012 (modified: 10 Nov 2022)EMNLP-CoNLL 2012Readers: Everyone
Abstract: Approximate search algorithms, such as cube pruning in syntactic machine translation, rely on the language model to estimate probabilities of sentence fragments. We contribute two changes that trade between accuracy of these estimates and memory, holding sentence-level scores constant. Common practice uses lower-order entries in an N-gram model to score the first few words of a fragment; this violates assumptions made by common smoothing strategies, including Kneser-Ney. Instead, we use a unigram model to score the first word, a bigram for the second, etc. This improves search at the expense of memory. Conversely, we show how to save memory by collapsing probability and backoff into a single value without changing sentence-level scores, at the expense of less accurate estimates for sentence fragments. These changes can be stacked, achieving better estimates with unchanged memory usage. In order to interpret changes in search accuracy, we adjust the pop limit so that accuracy is unchanged and report the change in CPU time. In a German-English Moses system with target-side syntax, improved estimates yielded a 63% reduction in CPU time; for a Hiero-style version, the reduction is 21%. The compressed language model uses 26% less RAM while equivalent search quality takes 27% more CPU. Source code is released as part of KenLM.
0 Replies

Loading