A Novel Data Association Algorithm for Object Tracking in Clutter with Application to Tennis Video Analysis

Abstract: It is well recognised that data association is critically important for object tracking. However, in the presence of successive misdetections, a large number of false candidates and an unknown number of abrupt model switchings that happen unpredictably, the data association problem can be very difficult. We tackle these difficulties by using a layered data association scheme. At the object level, trajectories are "grown" from sets of object candidates that have high probabilities of containing only true positives; by this means the otherwise combinatorial complexity is significantly reduced. Dijkstra’s shortest path algorithm is then used to perform data association at the trajectory level. The algorithm is applied to low-quality tennis video sequences to track a tennis ball. Experiments show that the algorithm is robust to abrupt model switchings, and performs well in heavily cluttered environments.
0 Replies
Loading