Meta-Q-Learning

Anonymous

Sep 25, 2019 ICLR 2020 Conference Blind Submission readers: everyone Show Bibtex
  • Keywords: meta reinforcement learning, propensity estimation, off-policy
  • TL;DR: MQL is a simple off-policy meta-RL algorithm that recycles data from the meta-training replay buffer to adapt to new tasks.
  • Abstract: This paper introduces Meta-Q-Learning (MQL), a new off-policy algorithm for meta-Reinforcement Learning (meta-RL). MQL builds upon three simple ideas. First, we show that Q-learning is competitive with state of the art meta-RL algorithms if given access to a context variable that is a representation of the past trajectory. Second, using a multi-task objective to maximize the average reward across the training tasks is an effective method to meta-train RL policies. Third, past data from the meta-training replay buffer can be recycled to adapt the policy on a new task using off-policy updates. MQL draws upon ideas in propensity estimation to do so and thereby amplifies the amount of available data for adaptation. Experiments on standard continuous-control benchmarks suggest that MQL compares favorably with state of the art meta-RL algorithms.
0 Replies

Loading