A quantifiable testing of global translational invariance in Convolutional and Capsule Networks

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: We design simple and quantifiable testing of global translation-invariance in deep learning models trained on the MNIST dataset. Experiments on convolutional and capsules neural networks show that both models have poor performance in dealing with global translation-invariance; however, the performance improved by using data augmentation. Although the capsule network is better on the MNIST testing dataset, the convolutional neural network generally has better performance on the translation-invariance.
  • Keywords: Translational invariance, CNN, Capsule Network
  • TL;DR: Testing of global translational invariance in Convolutional and Capsule Networks
0 Replies

Loading