Copula-like Variational InferenceDownload PDF

Marcel Hirt, Petros Dellaportas, Alain Durmus

06 Sept 2019 (modified: 05 May 2023)NeurIPS 2019Readers: Everyone
Abstract: This paper considers a new family of variational distributions motivated by Sklar's theorem. This family is based on new copula-like densities on the hypercube with non-uniform marginals which can be sampled efficiently, i.e. with a complexity linear in the dimension d of the state space. Then, the proposed variational densities that we suggest can be seen as arising from these copula-like densities used as base distributions on the hypercube with Gaussian quantile functions and sparse rotation matrices as normalizing flows. The latter correspond to a rotation of the marginals with complexity O(d log d). We provide some empirical evidence that such a variational family can also approximate non-Gaussian posteriors and can be beneficial compared to Gaussian approximations. Our method performs largely comparably to state-of-the-art variational approximations on standard regression and classification benchmarks for Bayesian Neural Networks.
Code Link: https://github.com/marcelah/copula-like-vi
CMT Num: 1695
0 Replies

Loading