Compressed Sensing in the Presence of Speckle NoiseDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 05 Nov 2023IEEE Trans. Inf. Theory 2022Readers: Everyone
Abstract: Speckle or multiplicative noise is a critical issue in coherence-based imaging systems, such as synthetic aperture radar and optical coherence tomography. Existence of speckle noise considerably limits the applicability of such systems by degrading their performance. On the other hand, the sophistications that arise in the study of multiplicative noise have so far impeded theoretical analysis of such imaging systems. As a result, the current acquisition technology relies on heuristic solutions, such as oversampling the signal and converting the problem into a denoising problem with multiplicative noise. This paper attempts to bridge the gap between theory and practice by providing the first theoretical analysis of such systems. To achieve this goal the log-likelihood function corresponding to measurement systems with speckle noise is characterized. Then employing compression codes to model the source structure, for the case of under-sampled measurements, a compression-based maximum likelihood recovery method is proposed. The mean squared error (MSE) performance of the proposed method is characterized and is shown to scale as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$O\left({\sqrt {\frac{k \log n }{ m}}}\right)$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> denote the intrinsic dimension of the signal class according to the compression code, the number of observations, and the ambient dimension of the signal, respectively. This result, while in contrast to imaging systems with additive noise in which MSE scales as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$O\left({{\frac{k \log n }{ m}}}\right)$ </tex-math></inline-formula> , suggests that if the signal class is structured (i.e., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k \ll n$ </tex-math></inline-formula> ), accurate recovery of a signal from under-determined measurements is still feasible, even in the presence of speckle noise. Simulation results are presented that suggest image recovery under multiplicative noise is inherently more challenging than additive noise, and that the derived theoretical results are sharp.
0 Replies

Loading