Rethinking the symmetry-preserving circuits for constrained variational quantum algorithms

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: variational quantum algorithm, quantum machine learning, symmetry-preserving circuit
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: With the arrival of the Noisy Intermediate-Scale Quantum (NISQ) era, Variational Quantum Algorithms (VQAs) have emerged as popular approaches to obtain possible quantum advantage in the relatively near future. In particular, how to effectively incorporate the common symmetries in physical systems as hard constraints in VQAs remains a critical and open question. In this paper, we revisit the Hamming Weight (HW) preserving ansatz and establish the links from ansatz to various symmetries and constraints, which both enlarges the usage of HW preserving ansatz and provides a coherent solution for constrained VQAs. Meanwhile, we utilize the quantum optimal control theory and quantum overparameterization theory to analyze the capability and expressivity of HW preserving ansatz and verify these theoretical results on unitary approximation problem. We conduct detailed numerical experiments on two well-studied symmetry-preserving problems, namely ground state energy estimation and feature selection in machine learning. The superior performance demonstrates the efficiency and supremacy of the proposed HW preserving ansatz on constrained VQAs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 3179
Loading