Abstract: In recommendation systems, users frequently engage in multiple types of behaviors, such as clicking, adding to cart, and purchasing. Multi-behavior sequential recommendation aims to jointly consider multiple behaviors to improve the target behavior's performance. However, with diversified behavior data, user behavior sequences will become very long in the short term, which brings challenges to the efficiency of the sequence recommendation model. Meanwhile, some behavior data will also bring inevitable noise to the modeling of user interests. To address the aforementioned issues, firstly, we develop the Efficient Behavior Sequence Miner (EBM) that efficiently captures intricate patterns in user behavior while maintaining low time complexity and parameter count. Secondly, we design hard and soft denoising modules for different noise types and fully explore the relationship between behaviors and noise. Finally, we introduce a contrastive loss function along with a guided training strategy to contrast the valid information with the noisy signal in the data, and seamlessly integrate the two denoising processes to achieve a high degree of decoupling of the noisy signal. Sufficient experiments on real-world datasets demonstrate the effectiveness and efficiency of our approach in dealing with multi-behavior sequential recommendation.
Loading