Abstract: CheXNet is not a surprise for Deep Learning (DL) community as it was primarily designed for radiologist-level pneumonia detection in Chest X-rays (CXRs). In this paper, we study CheXNet to analyze CXRs to detect the evidence of Covid-19. On a dataset of size 4, 600 CXRs (2, 300 Covid-19 positive cases and 2, 300 non-Covid cases (Healthy and Pneumonia cases)) and with k(=5) fold cross-validation technique, we achieve the following performance scores: accuracy of 0.98, AUC of 0.99, specificity of 0.98 and sensitivity of 0.99. On such a large dataset, our results can be compared with state-of-the-art results.
Loading