Fully Dynamic Algorithms for Chamfer Distance

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: Chamfer distance, dynamic algorithms
Abstract: We study the problem of computing Chamfer distance in the fully dynamic setting, where two set of points $A, B \subset \mathbb{R}^{d}$, each of size up to $n$, dynamically evolve through point insertions or deletions and the goal is to efficiently maintain an approximation to $dist_{\mathrm{CH}}(A,B) = \sum_{a \in A} \min_{b \in B} dist(a,b)$, where $dist$ is a distance measure. Chamfer distance is a widely used dissimilarity metric for point clouds, with many practical applications that require repeated evaluation on dynamically changing datasets, e.g., when used as a loss function in machine learning. In this paper, we present the first dynamic algorithm for maintaining an approximation of the Chamfer distance under the $\ell_p$ norm for $p \in$ {$1,2$}. Our algorithm reduces to approximate nearest neighbor (ANN) search with little overhead. Plugging in standard ANN bounds, we obtain $(1+\epsilon)$-approximation in $\tilde{O}(\epsilon^{-d})$ update time and $O(1/\epsilon)$-approximation in $\tilde{O}(d n^{\epsilon^2} \epsilon^{-4})$ update time. We evaluate our method on real-world datasets and demonstrate that it performs competitively against natural baselines.
Supplementary Material: zip
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 17782
Loading