Is In-Context Learning Sufficient for Instruction Following in LLMs?

ICLR 2025 Conference Submission2072 Authors

20 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, In-context Learning, Alignment
Abstract: In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on established benchmarks such as MT-Bench and AlpacaEval 2.0 (LC), especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding more, potentially carefully selected, high-quality demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2072
Loading