Keywords: 3D Computer Vision, Neural Rendering, Avatar Modeling
Abstract: We present locality-sensitive avatar, a neural radiance field (NeRF) based network to learn human motions from monocular videos. To this end, we estimate a canonical representation between different frames of a video with a non-linear mapping from observation to canonical space, which we decompose into a skeletal rigid motion and a non-rigid counterpart. Our key contribution is to retain fine-grained details by modeling the non-rigid part with a graph neural network (GNN) that keeps the pose information local to neighboring body parts.
Compared to former canonical representation based methods which solely operate on the coordinate space of a whole shape, our locality-sensitive motion modeling can reproduce both realistic shape contours and vivid fine-grained details. We evaluate on ZJU-MoCap, ActorsHQ, SynWild, and various outdoor videos. The experiments reveal that with the locality sensitive deformation to canonical feature space, we are the first to achieve state-of-the-art results across novel view synthesis, novel pose animation and 3D shape reconstruction simultaneously. For reproducibility, the code will be available upon publication.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 817
Loading