Non-Rigid Object Detection with LocalInterleaved Sequential Alignment (LISA).Download PDFOpen Website

2014 (modified: 09 Nov 2022)IEEE Trans. Pattern Anal. Mach. Intell.2014Readers: Everyone
Abstract: This paper shows that the successively evaluated features used in a sliding window detection process to decide about object presence/absence also contain knowledge about object deformation. We exploit these detection features to estimate the object deformation. Estimated deformation is then immediately applied to not yet evaluated features to align them with the observed image data. In our approach, the alignment estimators are jointly learned with the detector. The joint process allows for the learning of each detection stage from less deformed training samples than in the previous stage. For the alignment estimation we propose regressors that approximate non-linear regression functions and compute the alignment parameters extremely fast.
0 Replies

Loading