Transfer Learning for Humor Detection by Twin Masked Yellow MuppetsOpen Website

28 Jun 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Humorous texts can be of different forms such as punchlines, puns, or funny stories. Existing humor classification systems have been dealing with such diverse forms by treating them independently. In this paper, we argue that different forms of humor share a common background either in terms of vocabulary or constructs. As a consequence, it is likely that classification performance can be improved by jointly tackling different humor types. Hence, we design a shared-private multitask architecture following a transfer learning paradigm and perform experiments over four gold standard datasets. Empirical results steadily confirm our hypothesis by demonstrating statistically-significant improvements over baselines and accounting for new state-of-the-art figures for two datasets.
0 Replies

Loading