Abstract: In this article, we stabilize a discrete-time Markov process evolving on a compact subset of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathbb {R}^d$</tex-math></inline-formula> to an arbitrary target distribution that has an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$L^\infty (\cdot)$</tex-math></inline-formula> density and does not necessarily have a connected support on the state space. We address this problem by stabilizing the corresponding Kolmogorov forward equation, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> mean-field model <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"/> of the system, using a density-dependent transition Kernel as the control parameter. Our main application of interest is controlling the distribution of a multiagent system in which each agent evolves according to this discrete-time Markov process. To prevent agent state transitions at the equilibrium distribution, which would potentially waste energy, we show that the Markov process can be constructed in such a way that the operator that pushes forward measures is the identity at the target distribution. In order to achieve this, the transition kernel is defined as a function of the current agent distribution, resulting in a nonlinear Markov process. Moreover, we design the transition kernel to be <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">decentralized</i> in the sense that it depends only on the local density measured by each agent. We prove the existence of such a decentralized control law that globally stabilizes the target distribution. Furthermore, to implement our control approach on a finite <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> -agent system, we smoothen the mean-field dynamics via the process of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">mollification</i> . We validate our control law with numerical simulations of multiagent systems with different population sizes. We observe that as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> increases, the agent distribution in the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> -agent simulations converges to the solution of the mean-field model, and the number of agent state transitions at equilibrium decreases to zero.
0 Replies
Loading