GRACE: Generating Socially Appropriate Robot Actions Leveraging LLMs and Human Explanations

Published: 25 Sept 2024, Last Modified: 04 Mar 20252025 IEEE International Conference on Robotics and Automation (ICRA)EveryoneRevisionsCC BY 4.0
Abstract: When operating in human environments, robots need to handle complex tasks while both adhering to social norms and accommodating individual preferences. For instance, based on common sense knowledge, a household robot can predict that it should avoid vacuuming during a social gathering, but it may still be uncertain whether it should vacuum before or after having guests. In such cases, integrating common-sense knowledge with human preferences, often conveyed through human explanations, is fundamental yet a challenge for existing systems. In this paper, we introduce GRACE, a novel approach addressing this while generating socially appropriate robot actions. GRACE leverages common sense knowledge from Large Language Models (LLMs), and it integrates this knowledge with human explanations through a generative network architecture. The bidirectional structure of GRACE enables robots to refine and enhance LLM predictions by utilizing human explanations and makes robots capable of generating such explanations for human-specified actions. Our experimental evaluations show that integrating human explanations boosts GRACE's performance, where it outperforms several baselines and provides sensible explanations.
Loading