TEST: Triplet Ensemble Student-Teacher Model for Unsupervised Person Re-IdentificationDownload PDFOpen Website

2021 (modified: 16 Nov 2022)IEEE Trans. Image Process. 2021Readers: Everyone
Abstract: The self-ensembling methods have achieved amazing performance for semi-supervised representation learning and domain adaptation. However, the disadvantage of these methods is that the teacher network is tightly coupled with the student network, which limits the descriptive ability of the self-ensembling model. To overcome the coupling effect between the teacher network and the student network, we propose a novel Triplet Ensemble Student-Teacher (TEST) model for unsupervised person re-identification, which consists of one teacher network <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> and two student networks <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S2$ </tex-math></inline-formula> . Similar to the traditional self-ensembling model, the student network <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> is applied to update the teacher network <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> . Furthermore, a closed-loop learning mechanism is built in the TEST model by imposing an ensemble consistent constraint between <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S2$ </tex-math></inline-formula> , and performing a heterogeneous co-teaching procedure between <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S2$ </tex-math></inline-formula> . With the closed-loop learning mechanism, the TEST model can loosen the constraint between the teacher <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> and the student <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> , and enhance the descriptive ability of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> . Besides, the knowledge exchange between <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S1$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S2$ </tex-math></inline-formula> can ensure that the two student networks can elegantly deal with the noisy labels and avoid coupling. By training the TEST model with the clustering-generated pseudo labels, we can achieve effective and robust representation learning for unsupervised person re-identification. The evaluations on three widely-used benchmarks show that our approach can achieve significant performance compared with state-of-the-art methods.
0 Replies

Loading