GC-Bench: An Open and Unified Benchmark for Graph Condensation

Published: 26 Sept 2024, Last Modified: 13 Nov 2024NeurIPS 2024 Track Datasets and Benchmarks PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: graph condensation, graph distillation, dataset distillation
Abstract: Graph condensation (GC) has recently garnered considerable attention due to its ability to reduce large-scale graph datasets while preserving their essential properties. The core concept of GC is to create a smaller, more manageable graph that retains the characteristics of the original graph. Despite the proliferation of graph condensation methods developed in recent years, there is no comprehensive evaluation and in-depth analysis, which creates a great obstacle to understanding the progress in this field. To fill this gap, we develop a comprehensive Graph Condensation Benchmark (GC-Bench) to analyze the performance of graph condensation in different scenarios systematically. Specifically, GC-Bench systematically investigates the characteristics of graph condensation in terms of the following dimensions: effectiveness, transferability, and complexity. We comprehensively evaluate 12 state-of-the-art graph condensation algorithms in node-level and graph-level tasks and analyze their performance in 12 diverse graph datasets. Further, we have developed an easy-to-use library for training and evaluating different GC methods to facilitate reproducible research.The GC-Bench library is available at https://github.com/RingBDStack/GC-Bench.
Supplementary Material: pdf
Submission Number: 167
Loading