Abstract: Most existing image inpainting methods assume that the location of the repair area (watermark) is known, but this assumption does not always hold. In addition, the actual watermarked face is in a compressed low-quality form, which is very disadvantageous to the repair due to compression distortion effects. To address these issues, this paper proposes a low-quality watermarked face inpainting method based on joint residual learning with cooperative discriminant network. We first employ residual learning based global inpainting and facial features based local inpainting to render clean and clear faces under unknown watermark positions. Because the repair process may distort the genuine face, we further propose a discriminative constraint network to maintain the fidelity of repaired faces. Experimentally, the average PSNR of inpainted face images is increased by 4.16dB, and the average SSIM is increased by 0.08. TPR is improved by 16.96% when FPR is 10% in face verification.
0 Replies
Loading