Corporate Needs You to Find the Difference: Revisiting Submodular and Supermodular Ratio Optimization Problems

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: densest subgraph, densest supermodular set, submodular function minimization.
TL;DR: We unify submodular/supermodular ratio problems and show general algorithms like SuperGreedy++ and min-norm point methods are surprisingly efficient and scalable, outperforming specialized methods in theory and practice
Abstract: We consider the following question: given a submodular or supermodular set function $f:2^V \to \mathbb{R}$, how should one minimize or maximize its average value $f(S)/|S|$ over non-empty subsets $S\subseteq V$? This problem generalizes several well-known objectives including Densest Subgraph (DSG), Densest Supermodular Set (DSS), and Submodular Function Minimization (SFM). Motivated by recent applications [39, 31], we formalize two new broad problems: the Unrestricted Sparsest Submodular Set (USSS) and Unrestricted Densest Supermodular Set (UDSS) which allow negative and non-monotone functions. Using classical results we observe that DSS, SFM, USSS, UDSS, and MNP are all equivalent under strongly polynomial-time reductions. This equivalence enables algorithmic cross-over: methods designed for one problem can be repurposed to solve others efficiently. In particular we use the perspective of the minimum norm point in the base polyhedron of a sub/supermodular function which, via Fujishige's results, yields the dense decomposition as a byproduct. Via this perspective we show that a recent converging heuristic for DSS, \textsc{SuperGreedy++} [15, 29], and Wolfe’s minimum norm point algorithm are both universal solvers for all of these problems. On the theoretical front, we explain the observation made in recent work [39, 31] that \textsc{SuperGreedy++} appears to work well even in settings beyond DSS. Surprisingly, we also show that this simple algorithm can be used for Submodular Function Minimization, including for example that it can act as an effective minimum $st$ cut algorithm. On the empirical front, we explore the utility of several different algorithms including Fujishige-Wolfe min-norm point algorithm for recent problems. We conduct over 400 experiments across seven problem types and large-scale synthetic and real-world datasets (up to $\approx 100$ million edges). Our results reveal that methods historically considered inefficient, such as convex-programming methods, flow-based solvers, and Fujishige-Wolfe’s algorithm, outperform state-of-the-art task-specific baselines by orders of magnitude on concrete problems like HNSN [39]. These findings challenge prevailing assumptions and demonstrate that with the right framing, general optimization algorithms can be both scalable and state-of-the-art for supermodular and submodular ratio problems.
Supplementary Material: zip
Primary Area: Optimization (e.g., convex and non-convex, stochastic, robust)
Submission Number: 17770
Loading