Adaptive Training Distributions with Scalable Online Bilevel Optimization

TMLR Paper1850 Authors

20 Nov 2023 (modified: 17 Sept 2024)Rejected by TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large neural networks pretrained on web-scale corpora are central to modern machine learning. In this paradigm, the distribution of the large, heterogeneous pretraining data rarely matches that of the application domain. This work considers modifying the pretraining distribution in the case where one has a small sample of data reflecting the targeted test conditions. We propose an algorithm motivated by a recent formulation of this setting as an online, bilevel optimization problem. With scalability in mind, our algorithm prioritizes computing gradients at training points which are likely to most improve the loss on the targeted distribution. Empirically, we show that in some cases this approach is beneficial over existing strategies from the domain adaptation literature but may not succeed in other cases. We propose a simple test to evaluate when our approach can be expected to work well and point towards further research to address current limitations.
Submission Length: Regular submission (no more than 12 pages of main content)
Changes Since Last Submission: N/A
Assigned Action Editor: ~changjian_shui1
Submission Number: 1850
Loading