TerpreT: A Probabilistic Programming Language for Program Induction

Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, Daniel Tarlow

Oct 14, 2016 (modified: Dec 02, 2016) NIPS 2016 workshop NAMPI submission readers: everyone
  • Abstract: We study machine learning formulations of inductive program synthesis; that is, given input-output examples, synthesize source code that maps inputs to corresponding outputs. Our key contribution is TerpreT, a domain-specific language for expressing program synthesis problems. A TerpreT model is composed of a specification of a program representation and an interpreter that describes how programs map inputs to outputs. The inference task is to observe a set of input-output examples and infer the underlying program. From a TerpreT model we automatically perform inference using four different back-ends: gradient descent (thus each TerpreT model can be seen as a differentiable interpreter), linear program (LP) relaxations for graphical models, discrete satisfiability solving, and the SKETCH program synthesis system. TerpreT has two main benefits. First, it enables rapid exploration of a range of domains, program representations, and interpreter models. Second, it separates the model specification from the inference algorithm, allowing proper comparisons between different approaches to inference. We illustrate the value of TerpreT by developing several interpreter models and performing an extensive empirical comparison between alternative inference algorithms on a variety of program models. To our knowledge, this is the first work to compare gradient-based search over program space to traditional search-based alternatives. Our key empirical finding is that constraint solvers dominate the gradient descent and LP-based formulations.
  • TL;DR: A new language for specifying program induction problems and a set of compilers for solving these problems using different algorithms (including backpropagation).
  • Conflicts: microsoft.com
  • Keywords: Supervised Learning, Deep learning, Structured prediction, Optimization