Multi-view feature engineering and learningDownload PDFOpen Website

2015 (modified: 10 Nov 2022)CVPR 2015Readers: Everyone
Abstract: We frame the problem of local representation of imaging data as the computation of minimal sufficient statistics that are invariant to nuisance variability induced by viewpoint and illumination. We show that, under very stringent conditions, these are related to “feature descriptors” commonly used in Computer Vision. Such conditions can be relaxed if multiple views of the same scene are available. We propose a sampling-based and a point-estimate based approximation of such a representation, compared empirically on image-to-(multiple)image matching, for which we introduce a multi-view wide-baseline matching benchmark, consisting of a mixture of real and synthetic objects with ground truth camera motion and dense three-dimensional geometry.
0 Replies

Loading