Keywords: Data Interpolation, Multiplicative Constant, W-Shaped Double Descent, Nearest Neighbor Algorithm
Abstract: The over-parameterized models attract much attention in the era of data science and deep learning. It is empirically observed that although these models, e.g. deep neural networks, over-fit the training data, they can still achieve small testing error, and sometimes even outperform traditional algorithms which are designed to avoid over-fitting. The major goal of this work is to sharply quantify the benefit of data interpolation in the context of nearest neighbors (NN) algorithm. Specifically, we consider a class of interpolated weighting schemes and then carefully characterize their asymptotic performances. Our analysis reveals a U-shaped performance curve with respect to the level of data interpolation, and proves that a mild degree of data interpolation strictly improves the prediction accuracy and statistical stability over those of the (un-interpolated) optimal $k$NN algorithm. This theoretically justifies (predicts) the existence of the second U-shaped curve in the recently discovered double descent phenomenon. Note that our goal in this study is not to promote the use of interpolated-NN method, but to obtain theoretical insights on data interpolation inspired by the aforementioned phenomenon.
Original Pdf: pdf
9 Replies
Loading