MixUp as Directional Adversarial Training

Anonymous

Sep 25, 2019 ICLR 2020 Conference Blind Submission readers: everyone Show Bibtex
  • Keywords: MixUp, Adversarial Training, Untied MixUp
  • TL;DR: We present a novel interpretation of MixUp as belonging to a class highly analogous to adversarial training, and on this basis we introduce a simple generalization which outperforms MixUp
  • Abstract: MixUp is a data augmentation scheme in which pairs of training samples and their corresponding labels are mixed using linear coefficients. Without label mixing, MixUp becomes a more conventional scheme: input samples are moved but their original labels are retained. Because samples are preferentially moved in the direction of other classes \iffalse -- which are typically clustered in input space -- \fi we refer to this method as directional adversarial training, or DAT. We show that under two mild conditions, MixUp asymptotically convergences to a subset of DAT. We define untied MixUp (UMixUp), a superset of MixUp wherein training labels are mixed with different linear coefficients to those of their corresponding samples. We show that under the same mild conditions, untied MixUp converges to the entire class of DAT schemes. Motivated by the understanding that UMixUp is both a generalization of MixUp and a form of adversarial training, we experiment with different datasets and loss functions to show that UMixUp provides improved performance over MixUp. In short, we present a novel interpretation of MixUp as belonging to a class highly analogous to adversarial training, and on this basis we introduce a simple generalization which outperforms MixUp.
  • Code: https://github.com/mixupAsDirectionalAdversarial/mixup_as_dat
0 Replies

Loading