Histopathology Stain-Color Normalization Using Deep Generative Models

Farhad G. Zanjani, Svitlana Zinger, Babak E. Bejnordi, Jeroen AWM van der Laak, Peter H.N. de With

Apr 11, 2018 MIDL 2018 Conference Submission readers: everyone
  • Abstract: Performance of designed CAD algorithms for histopathology image analysis is affected by the amount of variations in the samples such as color and intensity of stained images. Stain-color normalization is a well-studied technique for compensating such effects at the input of CAD systems. In this paper, we introduce unsupervised generative neural networks for performing stain-color normalization. For color normalization in stained hematoxylin and eosin (H&E) images, we present three methods based on three frameworks for deep generative models: variational auto-encoder (VAE), generative adversarial networks (GAN) and deep convolutional Gaussian mixture models (DCGMM). Our contribution is defining the color normalization as a learning generative model that is able to generate various color copies of the input image through a nonlinear parametric transformation. In contrast to earlier generative models proposed for stain-color normalization, our approach does not need any labels for data or any other assumptions about the H&E image content. Furthermore, our models learn a parametric transformation during training and can convert the color information of an input image to resemble any arbitrary reference image. This property is essential in time-critical CAD systems in case of changing the reference image, since our approach does not need retraining in contrast to other proposed generative models for stain-color normalization. Experiments on histopathological H&E images with high staining variations, collected from different laboratories, show that our proposed models outperform quantitatively state-of-the-art methods in the measure of color constancy with at least 10-15%, while the converted images are visually in agreement with this performance improvement.
  • Author affiliation: Eindhoven University of Technology
  • Keywords: Computational pathology, stain-color normalization, deep generative models, convolutional neural networks (CNN)
0 Replies