TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models

26 Sept 2024 (modified: 18 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multivariate Time Series Imputation, Diffusion models, Mamba, Space State Models, Generative Models, Graph Neural Networks, Transformers
TL;DR: We introduce TIMBA, a novel model using Mamba blocks in place of Transformers for superior multivariate time series imputation across various benchmarks and datasets.
Abstract: The problem of imputing multivariate time series spans a wide range of fields, from clinical healthcare to multi-sensor systems. Initially, Recurrent Neural Networks (RNNs) were employed for this task; however, their error accumulation issues led to the adoption of Transformers, leveraging attention mechanisms to mitigate these problems. Concurrently, the promising results of diffusion models in capturing original distributions have positioned them at the forefront of current research, often in conjunction with Transformers. In this paper, we propose replacing time-oriented Transformers with State-Space Models (SSM), which are better suited for temporal data modeling. Specifically, we utilize the latest SSM variant, S6, which incorporates attention-like mechanisms. By embedding S6 within Mamba blocks, we develop a model that integrates SSM, Graph Neural Networks, and node-oriented Transformers to achieve enhanced spatiotemporal representations. Implementing these architectural modifications, previously unexplored in this field, we present Time series Imputation with Bi-directional mamba blocks and diffusion models (TIMBA). TIMBA achieves superior performance in almost all benchmark scenarios and performs comparably in others across a diverse range of missing value situations and three real-world datasets. We also evaluate how the performance of our model varies with different amounts of missing values and analyse its performance on downstream tasks. In addition, we provide the original code to replicate the results.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6555
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview