Abstract: Efficiently incorporating entity-level information is a challenge for coreference resolution systems due to the difficulty of exact inference over partitions. We describe an end-to-end discriminative probabilistic model for coreference that, along with standard pairwise features, enforces structural agreement constraints between specified properties of coreferent mentions. This model can be represented as a factor graph for each document that admits efficient inference via belief propagation. We show that our method can use entity-level information to outperform a basic pairwise system.
0 Replies
Loading