FINET: Context-Aware Fine-Grained Named Entity TypingDownload PDF

2015 (modified: 16 Jul 2019)EMNLP 2015Readers: Everyone
Abstract: We propose FINET, a system for detecting the types of named entities in short inputs—such as sentences or tweets—with respect to WordNet’s super fine-grained type system. FINET generates candidate types using a sequence of multiple extractors, ranging from explicitly mentioned types to implicit types, and subsequently selects the most appropriate using ideas from word-sense disambiguation. FINET combats data scarcity and noise from existing systems: It does not rely on supervision in its extractors and generates training data for type selection from WordNet and other resources. FINET supports the most fine-grained type system so far, including types with no annotated training data. Our experiments indicate that FINET outperforms state-of-the-art methods in terms of recall, precision, and granularity of extracted types.
0 Replies

Loading