3D-Assisted Coarse-to-Fine Extreme-Pose Facial Landmark DetectionDownload PDFOpen Website

2017 (modified: 26 Jan 2025)CVPR Workshops 2017Readers: Everyone
Abstract: We propose a novel 3D-assisted coarse-to-fine extreme-pose facial landmark detection system in this work. For a given face image, our system first refines the face bounding box with landmark locations inferred from a 3D face model generated by a Recurrent 3D Regressor at coarse level. Another R3R is then employed to fit a 3D face model onto the 2D face image cropped with the refined bounding box at fine-scale. 2D landmark locations inferred from the fitted 3D face are further adjusted with the popular 2D regression method, i.e. LBF. The 3D-assisted coarse-to-fine strategy and the 2D adjustment process explicitly ensure both the robustness to extreme face poses and bounding box disturbance and the accuracy towards pixel-level landmark displacement. Extensive experiments on the Menpo Challenge test sets demonstrate the superior performance of our system.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview