Abstract: Learning policies for complex humanoid tasks remains both challenging and compelling. Inspired by how infants and athletes rely on external support--such as parental walkers or coach-applied guidance--to acquire skills like walking, dancing, and performing acrobatic flips, we propose A2CF: Adaptive Assistive Curriculum Force for humanoid motion learning. A2CF trains a dual-agent system, in which a dedicated assistive force agent applies state-dependent forces to guide the robot through difficult initial motions and gradually reduces assistance as the robot's proficiency improves. Across three benchmarks--bipedal walking, choreographed dancing, and backflip--A2CF achieves convergence 30% faster than baseline methods, lowers failure rates by over 40%, and ultimately produces robust, support-free policies. Real-world experiments further demonstrate that adaptively applied assistive forces significantly accelerate the acquisition of complex skills in high-dimensional robotic control.
Loading