Keywords: Text-Only Adaptation, End-to-end Speech Recognition
Abstract: Fast and accurate adaptation of automatic speech recognition (ASR) systems using only text data in the target domain is a problem of long-standing practical relevance. Text-only adaptation was easy in traditional cascaded ASR systems with completely decoupled acoustic and language models. Recently, the RNNTransducer (RNN-T) has emerged as a default ASR model because of its high accuracy, low latency, and capability of supporting streaming input. However text-only adaptation of the RNN-T model is significantly more challenging due to its tight integration of acoustic and language models and end-to-end training. Existing recent approaches for text-only adaptation of RNN-Ts, either entail significant modification to the network or introduce high latency during decoding. We propose a new approach (TOLSTOI) that imputes speech representations internal to a baseline RNN-T, starting from text-only inputs, and performs in-situ adaptation that results in higher adaptation accuracy without any runtime overheads during decoding. Our imputation model is a function of the labeled data and trained parameters of the ASR model, and that we show, is more effective in controlling catastrophic forgetting compared to existing methods. We establish the effectiveness of TOLSTOI using three target domains and two ASR models of varying complexity. We yield up to 35% relative reduction in word error rate with text-only adaptation while forgetting the least compared to existing adaptation approaches. Our method is easy to implement and can be harnessed on existing RNN-T models without requiring ASR model training from scratch.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
TL;DR: A lightweight text-only adaptation technique for end-to-end speech recognition that is both fast and accurate.
11 Replies
Loading