On Confidence Sequences for Bounded Random Processes via Universal Gambling Strategies

Published: 23 Aug 2024, Last Modified: 14 Jan 2025IEEE Transactions on Information TheoryEveryoneCC BY 4.0
Abstract: This paper considers the problem of constructing a confidence sequence, which is a sequence of confidence intervals that hold uniformly over time, for estimating the mean of bounded real-valued random processes. This paper revisits the gambling-based approach established in the recent literature from a natural \emph{two-horse race} perspective, and demonstrates new properties of the resulting algorithm induced by Cover (1991)'s universal portfolio. The main result of this paper is a new algorithm based on a mixture of lower bounds, which closely approximates the performance of Cover's universal portfolio with constant per-round time complexity. A higher-order generalization of a lower bound on a logarithmic function in (Fan et al., 2015), which is developed as a key technique for the proposed algorithm, may be of independent interest.
Loading