Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation

Abstract: Author summary Characterizing the dynamics of biophysically modeled, large neuronal networks usually involves extensive numerical simulations. As an alternative to this expensive procedure we propose efficient models that describe the network activity in terms of a few ordinary differential equations. These systems are simple to solve and allow for convenient investigations of asynchronous, oscillatory or chaotic network states because linear stability analyses and powerful related methods are readily applicable. We build upon two research lines on which substantial efforts have been exerted in the last two decades: (i) the development of single neuron models of reduced complexity that can accurately reproduce a large repertoire of observed neuronal behavior, and (ii) different approaches to approximate the Fokker-Planck equation that represents the collective dynamics of large neuronal networks. We combine these advances and extend recent approximation methods of the latter kind to obtain spike rate models that surprisingly well reproduce the macroscopic dynamics of the underlying neuronal network. At the same time the microscopic properties are retained through the single neuron model parameters. To enable a fast adoption we have released an efficient Python implementation as open source software under a free license.
0 Replies
Loading