A Communication-efficient Algorithm with Linear Convergence for Federated Minimax LearningDownload PDF

Published: 31 Oct 2022, Last Modified: 16 Dec 2022NeurIPS 2022 AcceptReaders: Everyone
Keywords: federated learning, minimax optimization, generalization bound
TL;DR: We study federated minimax learning problem. We study its generalization performance through Rademacher complexity analysis and propose a novel communication-efficient algorithm that guarantees linear convergence to the optimal solution.
Abstract: In this paper, we study a large-scale multi-agent minimax optimization problem, which models many interesting applications in statistical learning and game theory, including Generative Adversarial Networks (GANs). The overall objective is a sum of agents' private local objective functions. We focus on the federated setting, where agents can perform local computation and communicate with a central server. Most existing federated minimax algorithms either require communication per iteration or lack performance guarantees with the exception of Local Stochastic Gradient Descent Ascent (SGDA), a multiple-local-update descent ascent algorithm which guarantees convergence under a diminishing stepsize. By analyzing Local SGDA under the ideal condition of no gradient noise, we show that generally it cannot guarantee exact convergence with constant stepsizes and thus suffers from slow rates of convergence. To tackle this issue, we propose FedGDA-GT, an improved Federated (Fed) Gradient Descent Ascent (GDA) method based on Gradient Tracking (GT). When local objectives are Lipschitz smooth and strongly-convex-strongly-concave, we prove that FedGDA-GT converges linearly with a constant stepsize to global $\epsilon$-approximation solution with $\mathcal{O}(\log (1/\epsilon))$ rounds of communication, which matches the time complexity of centralized GDA method. Then, we analyze the general distributed minimax problem from a statistical aspect, where the overall objective approximates a true population minimax risk by empirical samples. We provide generalization bounds for learning with this objective through Rademacher complexity analysis. Finally, we numerically show that FedGDA-GT outperforms Local SGDA.
Supplementary Material: pdf
21 Replies