Manifolds and Modules: How Function Develops in a Neural Foundation Model

Published: 23 Sept 2025, Last Modified: 06 Dec 2025DBM 2025 Findings PosterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Foundation models have shown remarkable success in fitting biological visual systems; however, their black-box nature inherently limits their utility for understanding brain function. Here, we peek inside a SOTA foundation model of neural activity (Wang et al., 2025) as a physiologist might, characterizing each `neuron' based on its temporal response properties to parametric stimuli. We analyze how different stimuli are represented in neural activity space by building decoding manifolds, and we analyze how different neurons are represented in stimulus-response space by building neural encoding manifolds. We find that the different processing stages of the model (i.e., the feedforward encoder, recurrent, and readout modules) each exhibit qualitatively different representational structures in these manifolds. The recurrent module shows a jump in capabilities over the encoder module by ``pushing apart'' the representations of different temporal stimulus patterns; while the readout module achieves biological fidelity by using numerous specialized feature maps rather than biologically plausible mechanisms. Overall, we present this work as a study of the inner workings of a prominent neural foundation model, gaining insights into the biological relevance of its internals through the novel analysis of its neurons' joint temporal response patterns.
Length: long paper (up to 8 pages)
Domain: methods
Author List Check: The author list is correctly ordered and I understand that additions and removals will not be allowed after the abstract submission deadline.
Anonymization Check: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and URLs that point to identifying information.
Submission Number: 40
Loading