Adversarial Causal Augmentation for Graph Covariate ShiftDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Graph Data Augmentation, Graph Neural Networks, Covariate Shift, OOD Generalization
TL;DR: We propose a novel graph data augmentation method, Adversarial Causal Augmentation (AdvCA), to address the covariate shift issues.
Abstract: Out-of-distribution (OOD) generalization on graphs is drawing widespread attention. However, existing efforts mainly focus on the OOD issue of correlation shift. While another type, covariate shift, remains largely unexplored but is the focus of this work. From a data generation view, causal features are stable substructures in data, which play key roles in OOD generalization. While their complementary parts, environments, are unstable features that often lead to various distribution shifts. Correlation shift establishes spurious statistical correlations between environments and labels. In contrast, covariate shift means that there exist unseen environmental features in test data. Existing strategies of graph invariant learning and data augmentation suffer from limited environments or unstable causal features, which greatly limits their generalization ability on covariate shift. In view of that, we propose a novel graph augmentation strategy: Adversarial Causal Augmentation (AdvCA), to alleviate the covariate shift. Specifically, it adversarially augments the data to explore diverse distributions of the environments. Meanwhile, it keeps the causal features invariant across diverse environments. It maintains the environmental diversity while ensuring the invariance of the causal features, thereby effectively alleviating the covariate shift. Extensive experimental results with in-depth analyses demonstrate that AdvCA can outperform 14 baselines on synthetic and real-world datasets with various covariate shifts.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
24 Replies

Loading