Keywords: Large Language Models, low-bit language models, quantization-aware training, pretraining of large language models, and scaling laws
TL;DR: This paper introduces Spectra LLM suite, showcasing that Ternary Language Models (TriLMs) outperform traditional and quantized models in efficiency and scaling, especially beyond one billion parameters.
Abstract: Rapid advancements in GPU computational power has outpaced memory capacity and bandwidth growth, creating bottlenecks in Large Language Model (LLM) inference. Post-training quantization is the leading method for addressing memory-related bottlenecks in LLM inference, but it suffers from significant performance degradation below 4-bit precision. This paper addresses these challenges by investigating the pretraining of low-bitwidth models specifically Ternary Language Models (TriLMs) as an alternative to traditional floating-point models (FloatLMs) and their post-training quantized versions (QuantLMs). We present Spectra LLM suite, the first open suite of LLMs spanning multiple bit-widths, including FloatLMs, QuantLMs, and TriLMs, ranging from 99M to 3.9B parameters trained on 300B tokens. Our comprehensive evaluation demonstrates that TriLMs offer superior scaling behavior in terms of model size (in bits). Surprisingly, at scales exceeding one billion parameters, TriLMs consistently outperform their QuantLM and FloatLM counterparts for a given bit size across various benchmarks. Notably, the 3.9B parameter TriLM matches the performance of the FloatLM 3.9B across all benchmarks, despite having fewer bits than FloatLM 830M. Overall, this research provides valuable insights into the feasibility and scalability of low-bitwidth language models, paving the way for the development of more efficient LLMs.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11310
Loading