Realistic CDSS Drug Dosing with End-to-end Recurrent Q-learning for Dual Vasopressor Control

Published: 23 Sept 2025, Last Modified: 01 Dec 2025TS4H NeurIPS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, ICU, septic shock, vasopressor, deep learning
TL;DR: Recurrent Reinforcement learning with clinical action space design for vasopressor control in ICU.
Abstract: Reinforcement learning (RL) applications in Clinical Decision Support Systems (CDSS) frequently encounter skepticism because models may recommend inoperable dosing decisions. We propose an end-to-end offline RL framework for dual vasopressor administration in Intensive Care Units (ICUs) that directly addresses this challenge through principled action space design. Our method integrates discrete, continuous, and directional dosing strategies with conservative Q-learning and incorporates a novel recurrent modeling using a replay buffer to capture temporal dependencies in ICU time-series data. Our comparative analysis of norepinephrine dosing strategies across different action space formulations reveals that the designed action spaces improve interpretability and facilitate clinical adoption while preserving efficacy. Empirical results on eICU and MIMIC demonstrate that action space design profoundly influences learned behavioral policies. Compared with baselines, the proposed methods achieve more than 3x expected reward improvements, while aligning with established clinical protocols.
Submission Number: 97
Loading