Harnessing large-language models to generate private synthetic text

16 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Privacy, synthetic data, large language models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a technique to generate a synthetic text dataset which is differentially private w.r.t. original text dataset. We show state of the art results in terms of quality of synthetic data, as measured by performance on downstream task.
Abstract: Differentially private training algorithms like DP-SGD protect sensitive training data by ensuring that trained models do not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate synthetic data that is differentially private with respect to the original data, and then non-privately training a model on the synthetic data. Doing so has several advantages: synthetic data can be reused for other tasks (including for hyper parameter tuning), retained indefinitely, and shared with third parties without sacrificing privacy. However, generating private synthetic data is much harder than training a private model. To improve performance on text data, recent work has utilized public data by starting with a pre-trained generative language model and privately fine-tuning it on sensitive data. This model can be used to sample a DP synthetic dataset. While this strategy seems straightforward, executing it has proven problematic. Previous approaches either show significant performance loss, or have, as we show, critical design flaws. In this paper we demonstrate that a proper training objective along with tuning fewer parameters results in excellent DP synthetic data quality. Our approach is competitive with direct DP-training of downstream classifiers in terms of performance on downstream tasks. Further, we demonstrate that our DP synthetic data is not only useful for downstream classifier training, but also to tune those same models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 756
Loading