On Unbiased Low-Rank Approximation with Minimum Distortion

Published: 01 Jan 2025, Last Modified: 27 Sept 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We describe an algorithm for sampling a low-rank random matrix $Q$ that best approximates a fixed target matrix $P\in\mathbb{C}^{n\times m}$ in the following sense: $Q$ is unbiased, i.e., $\mathbb{E}[Q] = P$; $\mathsf{rank}(Q)\leq r$; and $Q$ minimizes the expected Frobenius norm error $\mathbb{E}\|P-Q\|_F^2$. Our algorithm mirrors the solution to the efficient unbiased sparsification problem for vectors, except applied to the singular components of the matrix $P$. Optimality is proven by showing that our algorithm matches the error from an existing lower bound.
Loading