Linguistic-Relationships-Based Approach for Improving Word AlignmentOpen Website

Published: 01 Jan 2017, Last Modified: 19 Jun 2023ACM Trans. Asian Low Resour. Lang. Inf. Process. 2017Readers: Everyone
Abstract: The unsupervised word alignments (such as GIZA++) are widely used in the phrase-based statistical machine translation. The quality of the model is proportional to the size and the quality of the bilingual corpus. However, for low-resource language pairs such as Chinese and Vietnamese, a result of unsupervised word alignment sometimes is of low quality due to the sparse data. In addition, this model does not take advantage of the linguistic relationships to improve performance of word alignment. Chinese and Vietnamese have the same language type and have close linguistic relationships. In this article, we integrate the characteristics of linguistic relationships into the word alignment model to enhance the quality of Chinese-Vietnamese word alignment. These linguistic relationships are Sino-Vietnamese and content word. The experimental results showed that our method improved the performance of word alignment as well as the quality of machine translation.
0 Replies

Loading