Keywords: Neural Collapse, Representation Learning, Neural Networks
TL;DR: We provide compelling empirical evidence proving that there exists fine-grained structures in the last-layer representations of a well trained neural network, as a complement to existing Neural Collapse hypothesis.
Abstract: Recent work has observed an intriguing "Neural Collapse" phenomenon in well-trained neural networks, where the last-layer representations of training samples with the same label collapse into each other. This suggests that the last-layer representations are completely determined by the labels, and do not depend on the intrinsic structure of input distribution. We provide evidence that this is not a complete description, and that the apparent collapse hides important fine-grained structure in the representations. Specifically, even when representations apparently collapse, the small amount of remaining variation can still faithfully and accurately captures the intrinsic structure of input distribution. As an example, if we train on CIFAR-10 using only 5 coarse-grained labels (by combining two classes into one super-class) until convergence, we can reconstruct the original 10-class labels from the learned representations via unsupervised clustering. The reconstructed labels achieve $93\%$ accuracy on the CIFAR-10 test set, nearly matching the normal CIFAR-10 accuracy for the same architecture. Our findings show concretely how the structure of input data can play a significant role in determining the fine-grained structure of neural representations, going beyond what Neural Collapse predicts.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
10 Replies
Loading