Abstract: This paper investigates the problem of best arm identification (BAI) in stochastic multi-armed bandits in the fixed confidence setting. A novel formulation based on sequential hypothesis testing is provided, and an algorithm for BAI is proposed that, in spirit, follows the structure of the canonical sequential probability ratio test (SPRT). The algorithm has three features: (1) its sample complexity is asymptotically optimal, (2) it is guaranteed to be δ-PAC, and (3) it addresses the computational challenge of the state-of-the-art approaches. Specifically, the existing approaches rely on Thompson sampling for dynamically identifying the best arm and a challenger. This paper shows that identifying the challenger can be computationally expensive and demonstrates that the SPRT-based approach addresses that computational weakness.
0 Replies
Loading