Can Adversarial Training Be Manipulated By Non-Robust Features?Download PDF

Published: 31 Oct 2022, Last Modified: 12 Mar 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: Adversarial Training, Availability Attacks, Hypocritical Perturbations, Stability Attacks
Abstract: Adversarial training, originally designed to resist test-time adversarial examples, has shown to be promising in mitigating training-time availability attacks. This defense ability, however, is challenged in this paper. We identify a novel threat model named stability attack, which aims to hinder robust availability by slightly manipulating the training data. Under this threat, we show that adversarial training using a conventional defense budget $\epsilon$ provably fails to provide test robustness in a simple statistical setting, where the non-robust features of the training data can be reinforced by $\epsilon$-bounded perturbation. Further, we analyze the necessity of enlarging the defense budget to counter stability attacks. Finally, comprehensive experiments demonstrate that stability attacks are harmful on benchmark datasets, and thus the adaptive defense is necessary to maintain robustness.
TL;DR: Adversarial training may fail to provide test robustness under stability attacks, and thus an adaptive defense is necessary to resolve this issue.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
23 Replies