ProCreate, Don't Reproduce! Propulsive Energy Diffusion for Creative Generation

Published: 01 Jan 2024, Last Modified: 30 Jan 2025ECCV (60) 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this paper, we propose ProCreate, a simple and easy-to-implement method to improve sample diversity and creativity of diffusion-based image generative models and to prevent training data reproduction. ProCreate operates on a set of reference images and actively propels the generated image embedding away from the reference embeddings during the generation process. We propose FSCG-8 (Few-Shot Creative Generation 8), a few-shot creative generation dataset on eight different categories—encompassing different concepts, styles, and settings—in which ProCreate achieves the highest sample diversity and fidelity. Furthermore, we show that ProCreate is effective at preventing replicating training data in a large-scale evaluation using training text prompts. Code and FSCG-8 are available at https://github.com/Agentic-Learning-AI-Lab/procreate-diffusion-public.
Loading