Keywords: imitation learning, offline imitation learning, supplementary offline dataset
Abstract: In offline imitation learning (IL), we generally assume only a handful of expert trajectories and a supplementary offline dataset from suboptimal behaviors to learn the expert policy. While it is now common to minimize the divergence between state-action visitation distributions so that the agent also considers the future consequences of an action, a sampling error in an offline dataset may lead to erroneous estimates of state-action visitations in the offline case. In this paper, we investigate the effect of controlling the effective planning horizon (i.e., reducing the discount factor) as opposed to imposing an explicit regularizer, as previously studied. Unfortunately, it turns out that the existing algorithms suffer from magnified approximation errors when the effective planning horizon is shortened, which results in a significant degradation in performance. We analyze the main cause of the problem and provide the right remedies to correct the algorithm. We show that the corrected algorithm improves on popular imitation learning benchmarks by controlling the effective planning horizon rather than an explicit regularization.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
TL;DR: We fix the problem that previous IL algorithms don't work with a low discount factor, and show that offline IL can be solved with the proposed fix and lowering the discount factor.
Supplementary Material: zip
16 Replies
Loading